

Statistical Analysis of NJR data

Adrian Sayers Michael Whitehouse On behalf of the University of Bristol

Team

Michael Whitehouse Consultant Senior Lecturer University of Bristol

Yoav Ben-Shlomo Prof. of Clinical Epidemiology University of Bristol

Ashley Blom Prof. Of Orthopaedics University of Bristol

Emma Clarke Rheumatologist Consultant Senior Lecturer University of Bristol

0

Celia Gregson Orthogeriatrician Consultant Senior Lecturer University of Bristol

Linda Hunt Statistician University of Bristol

Adrian Sayers MRC NJR Research Fellow University of Bristol

Andrew Price Prof. Of Orthopaedics University of Oxford

> Andrew Judge Prof. of Translational Statistics University of Bristol

bristol.ac.uk

BRISTOL Bi Annual Outlier Analyses

- 1. Implant
 - a) Hip Stem
 - b) Hip Cup
 - c) Hip Constructs (Stem & Cups)
 - d) Knee Constructs
- 2. Consultant /Lead Surgeons / Units
 - a) 90 Day Mortality (last 5 years)
 - b) Revision (last 5 years, Last 10 years, (Un)Cemented , Total (Uni) Knee)

Person Time Incidence Rates

• Calculation:

		Number of first revisions of brand over analysis period
Brand PTIR	=	Total time all implants of this brand have been at risk of
		revision

BRISTOL Implant (Alarm Alert) Approach

- Alarm
 - PTIR 2x the overall group upper 95% CI PTIR
 - Non overlapping 95% CI
 - N>100 primary operations

- Alert
 - PTIR twice the overall upper 95% Cl group PTIR
 - Non overlapping 95% Cl
 - N<100 primary operations
- OR
 - PTIR 1.5 the overall upper 95% CI group PTIR
 - Non overlapping 95% Cl
 - N>100 primary operations

PTIR- Person Time Incidence Rate

University of BRISTOL Consultant Approach

- Funnel Plots
- (SMR | SRR) vs Expected
- Risk adjustment
 - Age
 - Sex
 - Indication
 - ASA
- Stratification by:
 - Hip fixation
 - Knee Type

BRISTOL Outlier methodology development

- <u>No Right Answers</u>
- Desirable Characteristics
 - Sensitivity & Specificity
 - Powerful
 - Accurate
 - Precise
- Model simplifications
- Case Mix adjustment
- A priori analytical approach

BRISTOL Data Driven Approach

- Annual report content determined by Editorial Committee
- Sections
 - Clinical activity
 - Hip
 - Knee
 - Ankle
 - Elbow
 - Shoulder

- Annual report content determined by Editorial Committee
- Sections
 - Clinical activity
 - Hip
 - Knee
 - Ankle
 - Elbow
 - Shoulder

BRISTOL Data Analysis

bristol.ac.uk

Temporal changes in percentages of each fixation method used in primary hip replacements.

Temporal changes in percentages of each bearing surface used in uncemented primary hip replacements.

Revision Outcomes by Fixation and BRISTOL Bearing

Comparison of cumulative probability of revision (Kaplan-Meier estimates) for **uncemented** primary hip replacements with different bearing surfaces.

Years since primary operation

Number at risk

- Uncemented MoP	133,873	116,605	100,644	84,375	69,229	54,834	42,228	30,868	21,562	14,098	8,860	5,043	2,189	541
Uncemented MoM	28,816	28,217	27,656	26,900	25,954	24,816	23,386	20,500	15,445	9,576	4,858	2,062	554	117
Uncemented CoP	64,644	52,666	42,380	33,774	26,897	21,086	16,552	12,657	9,584	7,200	5,025	3,209	1,596	522
— Uncemented CoC	113,185	103,237	92,499	79,621	66,197	51,211	36,764	24,569	15,867	9,626	5,592	2,933	1,387	400
Uncemented CoM	2,155	2,125	2,087	2,034	1,959	1,860	1,523	840	290	47	7	1	1	0
Resurfacing	39,318	38,098	36,900	35,618	34,223	32,599	30,236	27,116	22,648	17,096	11,569	7,102	3,558	1,178

BRISTOL Outcomes by Patient Age and Gender

Cumulative probability of revision (Kaplan-Meier) for the whole cohort of primary hip replacements broken down by age separately for each gender.

Outcomes by Implant Variables: Head BRISTOL Size

Effect of head size on cumulative revision rates after primary hip replacement using different bearing groups (only head sizes used in >500 hips are shown):

(d) Ceramic-on-polyethylene cemented monobloc cups

Years since primary operation

Number at risk

Head size = 22.25mm	3,030	2,904	2,713	2,484	2,254	2,011	1,750	1,533	1,311	1,038	747	448	177	0
Head size = 28mm	25,760	22,779	19,822	16,742	13,995	11,435	9,201	7,137	5,372	3,787	2,488	1,548	804	278
Head size = 32mm	9,801	7,738	5,842	4,152	2,907	1,906	1,212	721	378	169	103	49	19	6
—— Head size = 36mm	1,114	833	602	431	302	182	97	32	6	0	0	0	0	0

Patterns of Revision by Indication over BRISTOL time

Change in PTIR with time from primary hip replacement, for **aseptic loosening** for selected fixation/bearing sub-groups.

Kaplan-Meier estimates of the cumulative probability of a hip re-revision, shown separately for those with documented primaries in the NJR* and the remainder (shaded area indicate point-wise 95% Cls).

Number at risk

Primary not in the NJR	61,096	53,207	47,015	40,608	34,374	28,124	22,673	17,854	13,583	9,652	6,187	3,691	1,839	586
— Primary in the NJR	24,103	19,731	16,189	12,984	9,994	6,921	4,572	3,008	1,848	1,048	510	240	82	16

BRISTOL Revision by Fixation, Bearing and Age

					Males	3		Females							
Fixation/	Age at			1	Years from p	rimary operatio	on				`	Years from pr	imary operat	tion	
bearing types	(years)	n	1 year	3 years	5 years	7 years	10 years	13 years	n	1 year	3 years	5 years	7 years	10 years	13 years
All cases	55-64	89,239	0.90 (0.84-0.97)	1.94 (1.84-2.04)	3.04 (2.91-3.17)	4.40 (4.23-4.58)	6.57 (6.31-6.83)	8.60 (8.12-9.11)	108,096	0.73 (0.68-0.78)	1.67 (1.59-1.75)	2.85 (2.74-2.97)	4.42 (4.27-4.59)	6.74 (6.50-6.98)	8.61 (8.20-9.04)
All cemented	55-64	15,008	0.64 (0.52-0.78)	1.47 (1.28-1.69)	2.06 (1.82-2.33)	2.85 (2.54-3.20)	4.71 (4.21-5.26)	6.66 (5.76-7.7 1)	24,386	0.44 (0.36-0.53)	1.12 (0.98-1.27)	1.76 (1.58-1.96)	2.58 (2.34-2.84)	4.17 (3.80-4.57)	5.85 (5.21-6.55)
MoP	55-64	9,785	0.64 (0.50-0.83)	1.70 (1.45-2.00)	2.38 (2.07-2.74)	3.18 (2.79-3.62)	5.12 (4.52-5.79)	7.23 (6.19-8.43)	16,945	0.48 (0.39-0.60)	1.20 (1.04-1.39)	1.80 (1.59-2.04)	2.54 (2.27-2.85)	4.13 (3.72-4.59)	5.59 (4.93-6.35)
CoP	55-64	4,593	0.62 (0.43-0.91)	0.91 (0.66-1.25)	1.12 (0.82-1.53)	1.44 (1.06-1.97)	2.20 (1.52-3.17)	2.72 (1.68-4.39)	6,685	0.28 (0.18-0.45)	0.76 (0.56-1.04)	1.19 (0.91-1.56)	1.67 (1.28-2.16)	2.47 (1.82-3.33)	5.23 (3.33-8.17)
All uncemented	55-64	46,888	0.94 (0.85-1.03)	2.05 (1.91-2.19)	3.26 (3.08-3.45)	4.93 (4.67-5.20)	7.61 (7.19-8.06)	9.74 (8.91-10.64)	54,882	0.84 (0.76-0.92)	1.83 (1.71-1.95)	3.08 (2.91-3.25)	4.85 (4.62-5.10)	7.52 (7.14-7.92)	9.17 (8.51-9.89)
MoP	55-64	11,172	1.03 (0.85-1.24)	2.13 (1.85-2.44)	2.83 (2.49-3.21)	3.73 (3.29-4.22)	5.33 (4.65-6.11)	7.72 (6.28-9.47)	14,516	0.81 (0.68-0.97)	1.74 (1.52-1.98)	2.27 (2.01-2.56)	3.04 (2.70-3.41)	4.56 (4.01-5.18)	6.76 (5.53-8.26)
MoM	55-64	5,109	0.84 (0.63-1.14)	3.04 (2.61-3.56)	6.56 (5.91-7.29)	10.96 (10.11-11.87)	17.07 (15.84-18.38)	19.03 (17.33-20.88)	4,807	0.88 (0.65-1.18)	3.61 (3.11-4.18)	8.91 (8.13-9.76)	15.42 (14.41-16.50)	22.09 (20.77-23.47)	25.13 (23.01-27.40)
CoP	55-64	9,842	0.87 (0.70-1.08)	1.52 (1.27-1.83)	2.16 (1.82-2.57)	2.77 (2.32-3.30)	3.56 (2.95-4.29)	5.48 (4.25-7.06)	12,037	0.69 (0.56-0.86)	1.44 (1.22-1.70)	2.05 (1.76-2.39)	2.59 (2.23-3.02)	3.92 (3.28-4.67)	4.58 (3.75-5.61)
CoC	55-64	19,837	0.94 (0.81-1.09)	1.85 (1.67-2.06)	2.51 (2.27-2.76)	3.07 (2.78-3.39)	4.15 (3.63-4.74)	6.11 (4.51-8.25)	22,257	0.90 (0.78-1.03)	1.59 (1.43-1.77)	2.15 (1.95-2.37)	2.63 (2.39-2.91)	3.61 (3.18-4.09)	4.31 (3.65-5.10)
All hybrid	55-64	13,962	0.79 (0.66-0.96)	1.55 (1.34-1.79)	2.31 (2.03-2.63)	2.94 (2.59-3.33)	4.50 (3.94-5.13)	6.71 (5.55-8.11)	21,467	0.56 (0.47-0.68)	1.15 (1.00-1.31)	1.81 (1.61-2.04)	2.51 (2.25-2.81)	3.59 (3.21-4.01)	5.15 (4.35-6.09)
MoP	55-64	5,009	1.02 (0.77-1.34)	1.78 (1.43-2.22)	2.50 (2.05-3.04)	2.85 (2.34-3.47)	4.69 (3.83-5.73)	7.59 (5.76-9.97)	8,537	0.68 (0.52-0.88)	1.18 (0.96-1.45)	1.88 (1.58-2.24)	2.57 (2.18-3.02)	3.50 (2.97-4.12)	5.18 (4.17-6.44)
CoP	55-64	4,651	0.67 (0.46-0.96)	1.29 (0.95-1.75)	1.63 (1.19-2.23)	1.89 (1.35-2.63)	2.85 (1.81-4.47)	5.31 (2.98-9.35)	6,700	0.57 (0.41-0.79)	1.09 (0.83-1.43)	1.36 (1.03-1.79)	1.71 (1.27-2.31)	2.59 (1.81-3.72)	6.25 (3.17-12.15)
CoC	55-64	3,778	0.59 (0.39-0.89)	1.09 (0.80-1.49)	1.84 (1.42-2.39)	2.30 (1.79-2.95)	3.00 (2.31-3.90)	3.54 (2.61-4.81)	5,552	0.38 (0.25-0.59)	0.90 (0.67-1.20)	1.34 (1.05-1.71)	1.74 (1.38-2.19)	2.25 (1.78-2.85)	2.64 (1.96-3.54)
All reverse hybrid	55-64	1,760	0.97 (0.59-1.58)	2.24 (1.58-3.16)	3.09 (2.23-4.26)	3.68 (2.66-5.09)	6.25 (3.92-9.89)		2,780	0.79 (0.51-1.20)	1.63 (1.19-2.23)	2.29 (1.72-3.05)	3.03 (2.28-4.00)	4.84 (3.33-7.00)	5.70 (3.70-8.74)
MoP	55-64	670	0.96 (0.43-2.12)	1.74 (0.94-3.23)	2.98 (1.73-5.11)	3.48 (2.02-5.96)	7.43 (3.78-14.33)		1,165	1.06 (0.60-1.86)	1.82 (1.16-2.85)	2.88 (1.94-4.25)	3.83 (2.62-5.59)	7.04 (4.40-11.17)	
All resurfacing (MoM)	55-64	11,617	1.22 (1.04-1.44)	2.42 (2.15-2.72)	3.96 (3.61-4.34)	5.60 (5.18-6.06)	7.54 (7.01-8.11)	9.36 (8.45-10.37)	4,577	1.62 (1.29-2.03)	4.49 (3.93-5.13)	8.59 (7.81-9.45)	12.91 (11.96-13.94)	17.58 (16.43-18.80)	21.06 (19.38-22.86)

Revision by Stem/Cup Brand University of BRISTOL Combinations over time

		Median	_		Cumulative p	ercentage pro	bability of rev	ision (95% CI) at	:
Stem/cup brand	n	(IQR) age at primary	Percentage (%) males	1 year	3 years	5 years	7 years	10 years	13 years
Cemented									
Charnley Cemented Stem / Charnley Ogee	10,076	73 (67-78)	38%	0.37 (0.27-0.52)	1.18 (0.98-1.42)	1.88 (1.62-2.18)	2.49 (2.18-2.85)	3.93 (3.48-4.43)	5.28 (4.57-6.10)
Charnley Cemented Stem / Charnley Cemented Cup	4,510	72 (66-78)	38%	0.31 (0.19-0.53)	1.11 (0.83-1.46)	1.72 (1.37-2.16)	2.31 (1.89-2.83)	3.52 (2.94-4.21)	4.90 (4.02-5.98)
Charnley Cemented Stem / Charnley and Elite Plus LPW	6,590	74 (68-79)	29%	0.34 (0.22-0.51)	0.72 (0.53-0.96)	1.12 (0.88-1.42)	1.51 (1.22-1.86)	2.43 (2.01-2.94)	2.90 (2.38-3.52)
C-Stem Cemented Stem / Elite Plus Ogee	4,912	72 (66-77)	40%	0.36 (0.22-0.57)	0.82 (0.60-1.14)	1.08 (0.81-1.45)	1.44 (1.10-1.89)	2.31 (1.78-3.00)	2.85 (2.13-3.80)
C-Stem Cemented Stem / Marathon	6,025	67 (59-75)	41%	0.37 (0.24-0.57)	0.96 (0.71-1.30)	1.28 (0.95-1.72)	2.07 (1.44-2.97)		
MS-30 / Original ME Muller Low Profile C	3,164	74 (67-80)	31%	0.22 (0.11-0.47)	0.49 (0.29-0.83)	0.81 (0.52-1.26)	1.07 (0.69-1.65)	1.65 (1.01-2.70)	2.57 (1.19-5.50)
Muller Straight Stem Original / ME Muller Low Profile C	2,644	74 (69-79)	30%	0.46 (0.26-0.81)	0.88 (0.58-1.36)	1.13 (0.76-1.68)	1.94 (1.36-2.77)	2.34 (1.64-3.33)	3.10 (2.01-4.78)
Stanmore Modular Stem / Stanmore- Arcom Cup	5,181	75 (70-80)	29%	0.43 (0.29-0.66)	1.11 (0.85-1.45)	1.59 (1.26-2.00)	1.95 (1.56-2.43)	2.45 (1.95-3.07)	4.10 (3.00-5.58)
CPT / Elite Plus Ogee	2,955	73 (67-79)	36%	0.65 (0.42-1.02)	1.42 (1.04-1.93)	1.90 (1.44-2.51)	2.39 (1.83-3.12)	3.15 (2.36-4.21)	3.53 (2.53-4.91)
CPT / ZCA	12,996	76 (71-81)	30%	0.78 (0.64-0.95)	1.34 (1.14-1.57)	2.01 (1.74-2.32)	2.57 (2.24-2.94)	3.58 (3.09-4.15)	4.42 (3.65-5.34)
Exeter V40 / Exeter Contemporary Flanged	69,842	74 (68-79)	34%	0.40 (0.36-0.46)	0.86 (0.79-0.94)	1.22 (1.12-1.32)	1.57 (1.45-1.69)	2.27 (2.07-2.48)	3.54 (2.94-4.25)
Exeter V40 / Elite Plus Ogee	23,535	74 (69-80)	35%	0.34 (0.28-0.43)	0.77 (0.66-0.90)	1.11 (0.97-1.27)	1.51 (1.33-1.71)	2.15 (1.89-2.44)	2.71 (2.26-3.25)
Exeter V40 / Exeter Duration	16,726	73 (67-79)	32%	0.58 (0.48-0.71)	1.19 (1.03-1.37)	1.65 (1.46-1.87)	2.43 (2.17-2.72)	3.63 (3.26-4.05)	5.30 (4.49-6.25)
Exeter V40 / Opera	2,820	74 (68-80)	32%	0.40 (0.22-0.71)	0.81 (0.53-1.23)	1.16 (0.81-1.66)	1.56 (1.12-2.18)	3.18 (2.27-4.44)	5.24 (3.58-7.64)

bristol.ac.uk

Additional Data Presented on NJR BRISTOL Reports website

All Procedures - Activity

Primary Procedures -Patient Characteristics

Primary Procedures -Surgical Technique

Primary Procedures -Components

Revision Procedures -Patient Characteristics

Revision Procedures -Components

KNEES

This website contains all of the NJR's 14th Annual Report information, data and analyses on hip, knee, ankle, elbow and shoulder joint replacement surgery

Additional Data Presented on NJR BRISTOL Reports website

- Covers additional information such as:
 - Surgical approach
 - Bone cement type
 - Thromboprophylaxis
 - Intra-operative events
 - Revision procedures