

National Joint Replacement Registry

# The Role and Benefits of National Arthroplasty Registries.

Orthopaedic Surgeon Perspective

Presenter SE Graves
Director AOANJRR



# AOANJRR Background



- Fully owned by the Australian Othopaedic Association
- Data collection commenced in 1999 with full national implementation in 2002
- Funded by the Federal Government (Federal legislation 2009 to ensure cost recovery process updated in 2015)
- Listed as a Federal Quality Assurance Activity
- Major impact on joint replacement surgery Nationally and Internationally

#### **AOANJRR**





#### **AOA Partners with**

- South Australia Health and Medical Research Institute
- University of South Australia

#### **AOANJRR Overview**





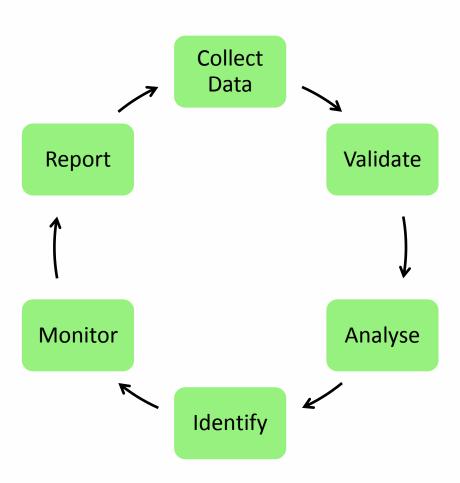
#### Participation Entirely Voluntary:

- Hospitals **307** public & private (100%)
- Surgeons 100 % participation
- Patients 34 'have opted off'
- Data on over 99% of procedures (Validated)
- Increasing at 5-7% per year (over 100,000 procedures p.a.)

#### Currently information on almost 1.2 million Procedures

- **502,397** hip procedures
- 597,435 knee procedures
- 33,288 shoulder procedures
- Almost 6 million individual prostheses components

#### AUSTRALIAN ORTHOPAEDIC ASSOCIATION


#### **Additional Devices**

- Elbow
- Wrist
- Ankle
- Spinal Disc replacement

#### Purpose

Collect quality clinical evidence that can be used to identify and monitor the effect of factors impacting on the outcome of joint replacement surgery and provide that information to relevant stakeholders to enable action and continuous beneficial change.

#### **Improvement**



#### Factors that Affect Outcomes

- Influenced by patient, surgeon, operative and prosthesis specific factors.
- The final result is a complex interaction between each of these.
- Registries are able to assess the relative importance of each of all relevant factors
- Almost all improvement in joint replacement in the last 10 years has been driven by registry data



- Death
- Revision
- Reasons for revision
- Types of revision
- Patient, surgeon, hospital, and prosthesis factors that impact on revision

Primary outcome measure

# National Joint Replacement Registry



#### Additional Data Collection

- Comorbidity data (BMI ASA or more detailed)
- Adverse events other than revision
- PROM's
- Radiological
- Prostheses Retrieval Data
- Data linkage (EHR, Administrative data sets, others)

#### **Individual Devices**



## New prostheses 2003-2007

| <b>Prostheses</b> | Total | ≥ 100 |
|-------------------|-------|-------|
| Hips              | 167   | 19.8% |
| Knees             | 99    | 28.3% |
| All               | 266   | 22.9% |

New Prostheses introduced into Australia 2003-2007



#### **Outcomes**

| Prosthesis | Total no. of components | -      | to the three be<br>s with CPR of 5 |            |
|------------|-------------------------|--------|------------------------------------|------------|
|            |                         | Better | Same                               | Worse      |
| Hip        | 33                      | 0      | 24                                 | 9 (27.3%)  |
| Knee       | 28                      | 0      | 20                                 | 8 (28.6%)  |
| All        | 61                      | 0      | 44                                 | 17 (27.9%) |

Worse = p value < 0.05 on two tailed test

#### Prostheses 2008-2012



| <b>Prostheses</b> | Total | ≥ 100 |
|-------------------|-------|-------|
| Hips              | 108   | 25.0% |
| Knees             | 63    | 31.7% |
| All               | 171   | 27.4% |

New Prostheses introduced into Australia 2008-2012



#### **Outcomes**

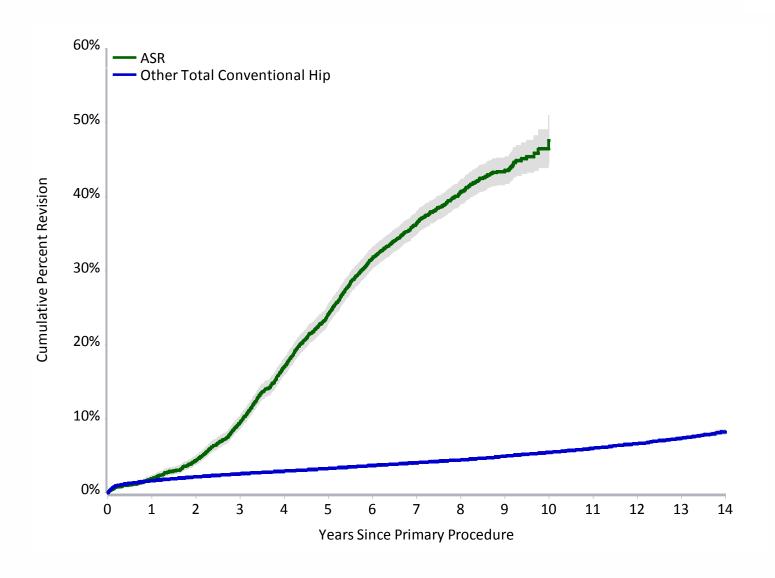
| Prosthesis | Total no. of components | -      | I to the three be<br>s with CPR of 5 |            |
|------------|-------------------------|--------|--------------------------------------|------------|
|            |                         | Better | Same                                 | Worse      |
| Hip        | 27                      | 0      | 17                                   | 10 (37.0%) |
| Knee       | 20                      | 0      | 9                                    | 11 (55.0%) |
| All        | 47                      | 0      | 26                                   | 21 (44.7%) |

Worse = p value < 0.05 on two tailed test

## New prostheses 2003-2012



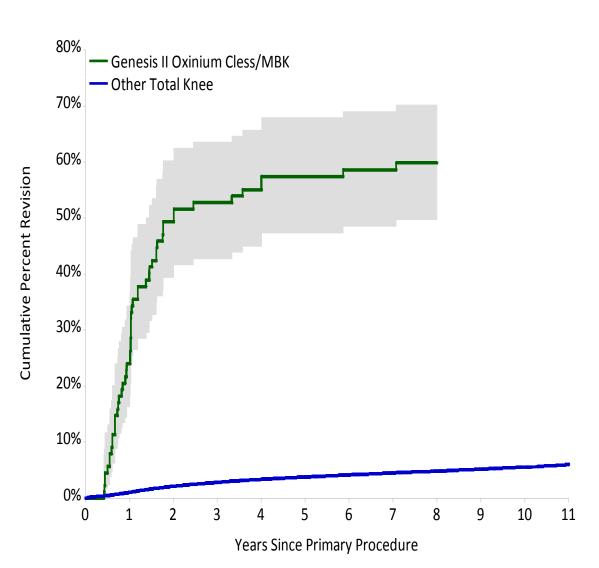
- Better outcome 1 in 500
- Worse outcome 30% not used in sufficient numbers to tell but of those where outcomes can be assessed then > 40% chance of worse outcome


#### **AOANJRR** Assessment of Devices

- Simultaneous comparison of all devices within the national setting
- There are differences in outcome individual devices, device specific features and whole classes of devices
- Patient and surgeon factors are always considered and they are important for some devices
- Statistically about 85% of devices perform the same as the best performing device in a particular class
- Of the remaining 15% some of those have a much higher rate of revision (outlier devices)

# Australian Registry Approach to Identification of Prosthesis Outliers

- Multistage approach
- Stage 1 (screening test 2x the risk of revision)
- Stage 2 (review and further analysis
  - examining impact of confounders)
- Stage 3 Independent Panel Review


#### **ASR XL Current Revision Rate**

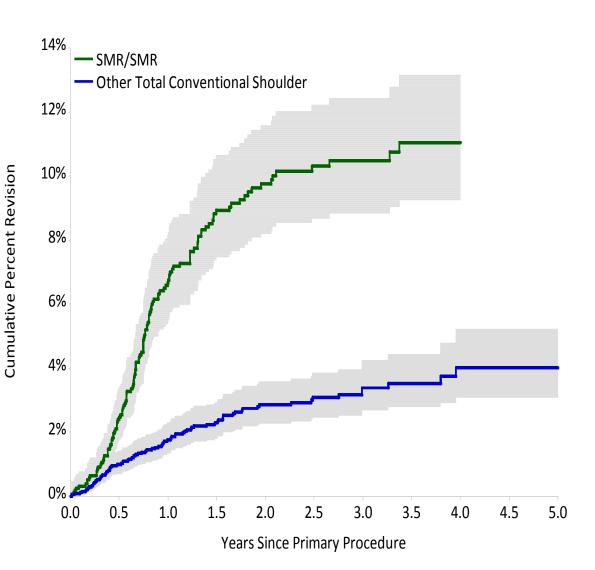




#### Cementless Oxinium Genesis TKR






HR - adjusted for age and gender

Genesis II Oxinium Cless/MBK vs Other Total Knee Entire Period: HR=17.28 (13.19, 22.63),p<0.001



## **SMR Conventional Shoulder**





HR - adjusted for age and gender

SMR/SMR vs Other Total Conventional Shoulder Entire Period: HR=3.36 (2.55, 4.41),p<0.001

#### Individual Prostheses Identified

- Between 2004 and 2013 the Registry has identified 117 prostheses or combinations using this approach
  - 58 conventional hip
  - 6 resurfacing
  - 39 total knee
  - 9 Partial Knee
  - 5 conventional and/or reverse shoulder

#### **Best Prostheses**



| Hips | Knees |
|------|-------|
|      |       |

MS 30 Stem (n=2000)

3 different acetabular components (2.4% - 3.5%)

Exeter V40 Stem (n=40,000)

6 different acetabular components (3.2% - 4.6%)

Secure Fit & Secure fit Plus Stem (n=10,000)

With Trident acetabular component (3.2% - 4.1%)

Summit Stem (n=3,500)

Pinnacle acetabular component (2.9%)

Nexgen CR (n=10,500)

(3.0%)

Nexgen CR Flex (n=31,000)

(2.9%)

PFC Sigma CR (n=21,500)

(3.7%)

PFC Sigma PS (n=6,500)

(4.5%)

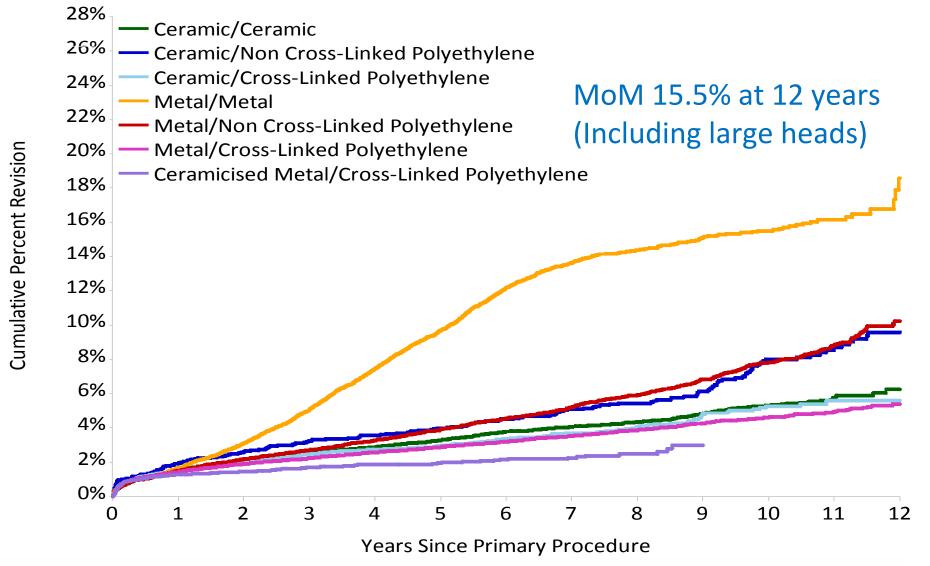
50% of Hips have less than 5% revision at 10 years

25% of Knees have less than 5% revision at 10 years

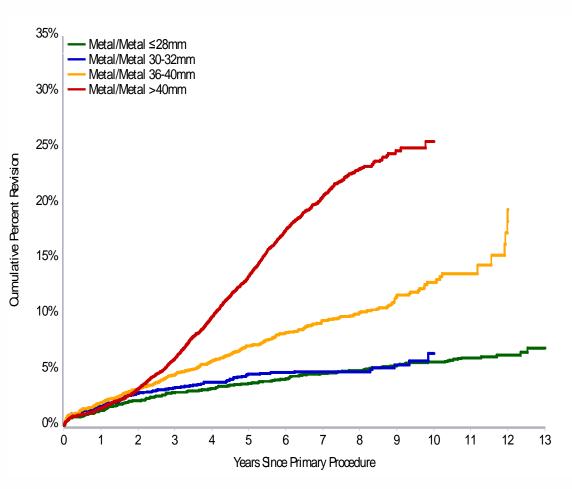
#### **Class of Device**

#### **Bearing Surfaces**








## Cumulative Percent Revision of Primary THR by Bearing Surface (OA)





### Cumulative Percent Revision of MoM Primary THR by Head Size (OA)



HR-adjusted for age and gender

Metal/Metal 30-32mm vs Metal/Metal ≤28mm Entire Period: HR=1.16 (0.90, 1.50),p=0.240

#### Metal/Metal 36-40mm vs Metal/Metal ≤28mm

0 - 4.5Yr: HR=1.87 (1.51, 2.32),p<0.001

4.5Yr - 5Yr: HR=3.53 (2.18, 5.74),p<0.001

5Yr - 6.5Yr: HR=2.16 (1.47, 3.17),p<0.001

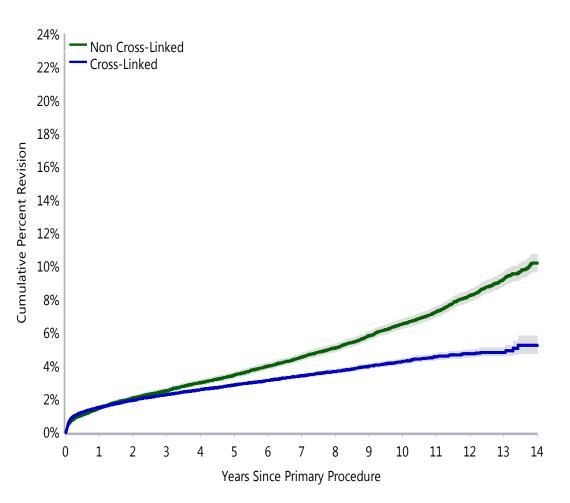
6.5Yr - 9Yr: HR=3.36 (2.27, 4.98),p<0.001

9Yr+: HR=6.90 (3.75, 12.69),p<0.001

#### Metal/Metal >40mm vs Metal/Metal ≤28mm

0 - 1Yr: HR=1.28 (0.98, 1.67),p=0.068

1Yr - 2Yr: HR=2.37 (1.77, 3.17),p<0.001


2Yr - 2.5Yr: HR=4.24 (2.88, 6.23),p<0.001

2.5Yr - 3Yr: HR=4.24 (2.90, 6.18),p<0.001

3Yr+: HR=8.78 (7.17, 10.74),p<0.001



# Cross-linked V's Non Cross-linked Polyethylene in THR



HR - adjusted for age and gender

Non Cross-Linked vs

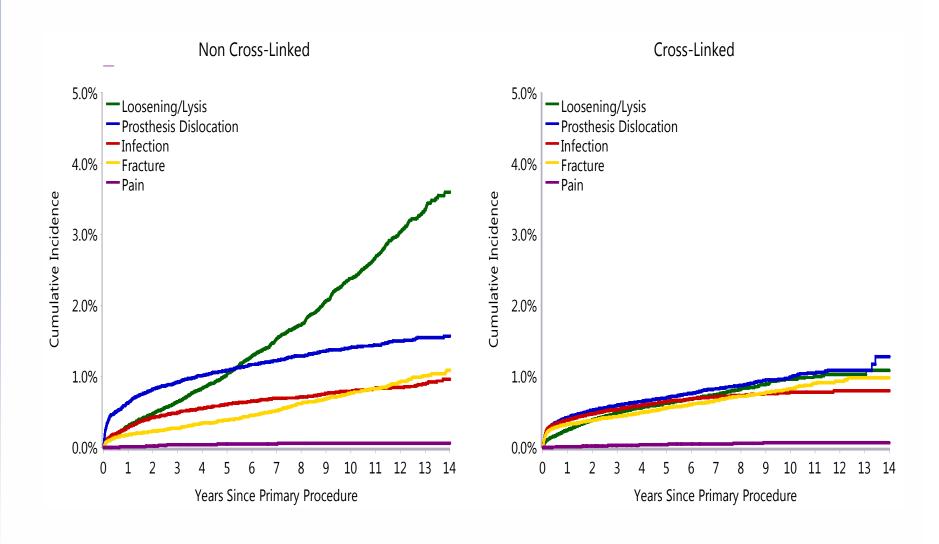
#### Cross-Linked

0 - 3Mth: HR=0.84 (0.74, 0.95),p=0.004

3Mth - 6Mth: HR=1.04 (0.82, 1.31),p=0.749

6Mth - 1.5Yr: HR=1.49 (1.30, 1.71),p<0.001

1.5Yr - 2.5Yr: HR=1.25 (1.05, 1.49),p=0.011


2.5Yr - 5Yr: HR=1.61 (1.41, 1.83),p<0.001

5Yr - 6.5Yr: HR=1.92 (1.59, 2.31),p<0.001

6.5Yr - 9Yr: HR=2.25 (1.90, 2.67),p<0.001

9Yr+: HR=3.10 (2.48, 3.89),p<0.001

#### Reasons for Revision Cross-linked V's Non Cross-linked



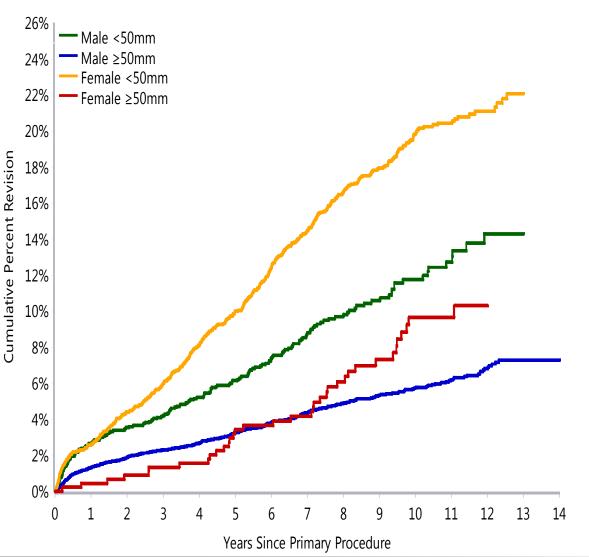
Excellent Post market surveillance system in an environment of ineffective Global Regulation

Joint replacement is a quality procedure which is being harmed by the current global approach to the introduction of new technology.

Need to change current approach to premarket technology assessment

# Approaches to Premarket Clinical Evidence

- Mostly none
- Company Sponsored


•

- Beyond Compliance
- Australian Prostheses List
- Harvard Global Program
- FDA US Registries Coordinated Program
- Registries are integral to all the developing programs

#### **Impact of Patient Factors**



#### Resurfacing (Head Size & Gender)



HR - adjusted for age

Male <50mm vs Male ≥50mm Entire Period: HR=2.06 (1.74, 2.45),p<0.001

Male ≥50mm vs Female ≥50mm

0 - 1.5Yr: HR=1.44 (0.83, 2.50),p=0.197

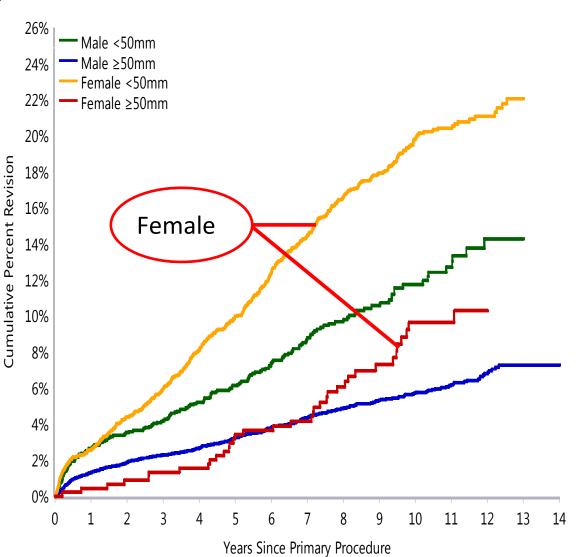
1.5Yr - 3Yr: HR=0.83 (0.46, 1.50),p=0.532

3Yr - 5Yr: HR=0.67 (0.38, 1.19),p=0.171

5Yr+: HR=0.50 (0.32, 0.79),p=0.003

Male <50mm vs Female <50mm Entire Period: HR=0.60 (0.50, 0.71),p<0.001

Female <50mm vs Female ≥50mm


0 - 5Yr: HR=3.08 (1.83, 5.18),p<0.001

5Yr+: HR=2.05 (1.31, 3.20),p=0.001



## Resurfacing (Head Size & Gender)





HR - adjusted for age

Male <50mm vs Male ≥50mm Entire Period: HR=2.06 (1.74, 2.45),p<0.001

Male ≥50mm vs Female ≥50mm

0 - 1.5Yr: HR=1.44 (0.83, 2.50),p=0.197

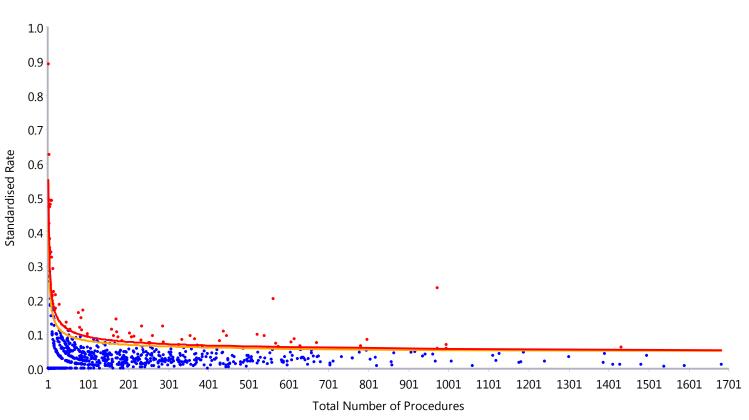
1.5Yr - 3Yr: HR=0.83 (0.46, 1.50),p=0.532

3Yr - 5Yr: HR=0.67 (0.38, 1.19),p=0.171

5Yr+: HR=0.50 (0.32, 0.79),p=0.003

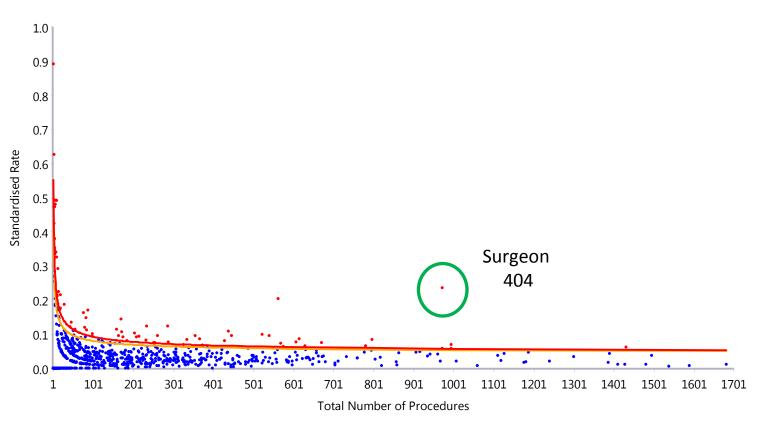
Male <50mm vs Female <50mm Entire Period: HR=0.60 (0.50, 0.71),p<0.001

Female <50mm vs Female ≥50mm


0 - 5Yr: HR=3.08 (1.83, 5.18),p<0.001

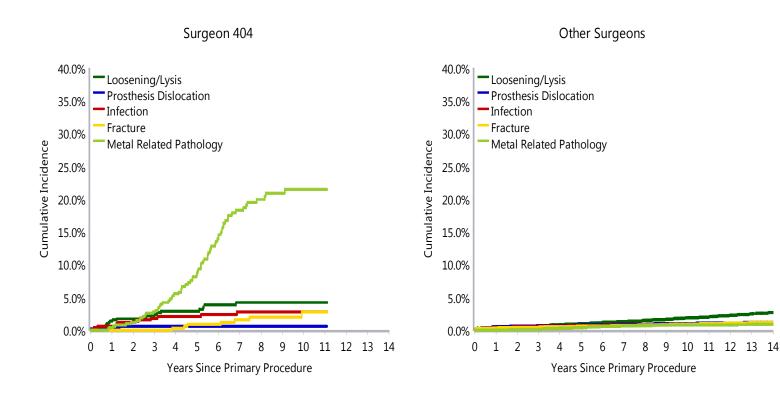
5Yr+: HR=2.05 (1.31, 3.20),p=0.001

#### Surgeon and Hospital


## Surgeon Performance






### Surgeon Performance





# Reasons why a Surgeon is an outlier can be identified





#### **Enhancing Surgeon Performance**



- Surgeons can review their own performance through secure confidential website access
- Privacy of Information protected by Government Legislation
- Many examples of assisting surgeons to improve outcomes
- Registry increasing the information provided
- AOA addressing the issue of surgeons who don't review data
- CPD points for contributing, reviewing and consulting with trusted colleagues about own performance

### Hospital performance varies



- Standardised reports to assess hospital performance
- Hospitals use this information to identify problems and areas for improvement
- Develop policies to enhance outcomes based on registry data
- Some hospitals are considering releasing data publically

### What makes a quality registry

Optimised to bring about beneficial change

- Governance
- Ownership
- Data Quality
- Availability and delivery of information to all stakeholders
- Integration into the health care system
- International collaboration

### What makes a quality registry

- Governance
- Ownership
- Data Quality
- Availability and delivery of information to all stakeholders
- Integration into the health care system
- International collaboration

## AOANJRR Provides Information to Multiple Stakeholders

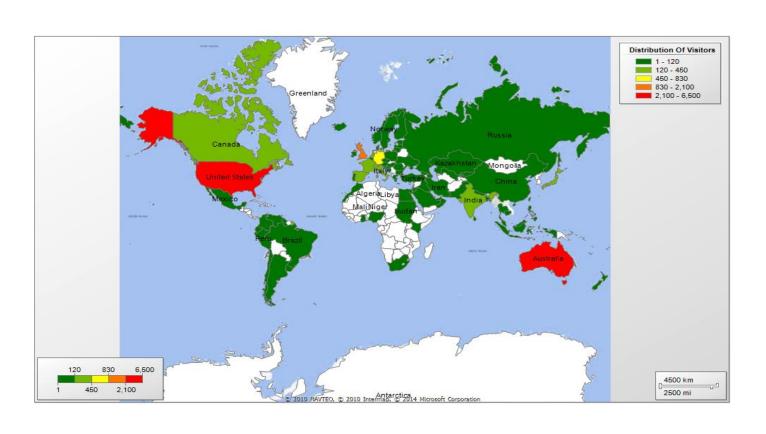


- Surgeons
- Consumers
- Government Health Departments
- Government Regulators
- Hospitals and Health Care Systems
- Medical Device Companies
- Health Insurers

Nationally and Globally






## AOANJRR Provides Information to Multiple Stakeholders

- Annual Report (15 separate reports)
- Secure stakeholder specific internet access (surgeons regulators and government and industry)
- Ad hoc reports (300 individual data requests each year) from government, industry, surgeons and research organisations
- Stakeholder specific websites



### Global Map of Data Use 214 countries





### Integration into Health Care Systems

- Detailed analyses of identified prostheses provided to Regulator on release of annual report
- This is independently reviewed by regulator nominated physicians that provides advice to regulator on required actions.
- Up classification of joint prostheses from Class IIB to Class III
- Department Health uses data used to determine if devices are reimbursed and the level of reimbursement.

#### International Collaboration

- With other individual registries
- ISAR
- ICOR
- Benchmarking
- Registry nested trials

### Are Registries Effective?



- The revision burden is decreasing:
  - Revision hip procedures have decreased as a proportion of all hip procedures from

**13.1%** in 2002 to **10.2%** in 2014

 Revision knee procedures have decreased as a proportion of all knee procedures from

8.8% in 2004 to 7.7% in 2014

- Over \$600 million in savings to the Australian Health Care system in the last ten years
- Flow-on savings internationally



National Joint Replacement Registry

### Thank You

