

How the NJR has changed our Practice

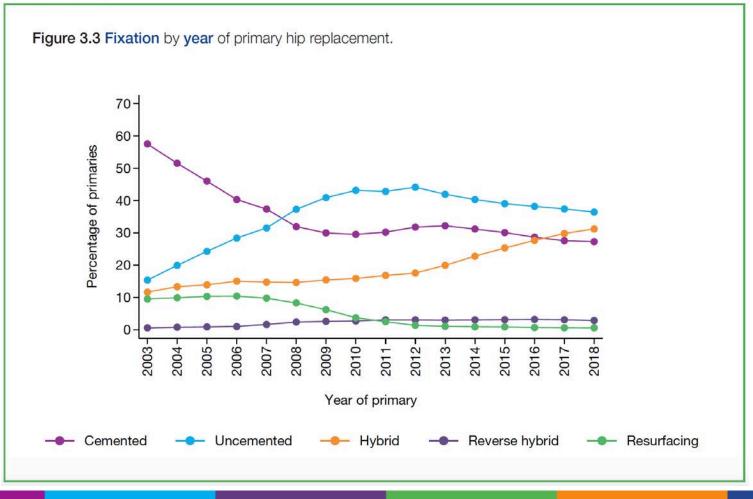
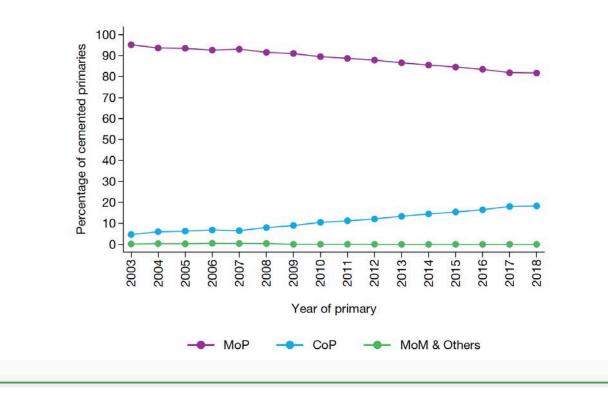
Mr Tim Wilton MA FRCS NJR Medical Director Arthroplasty Surgeon Past President BOA

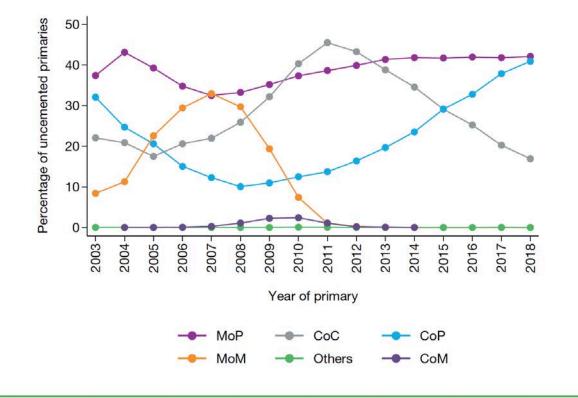
Disclosures

- Past President BOA
- Past President BASK
- Previous Design Consultant to Smith and Nephew
- Speaker panel for Smith and Nephew
- Speaker panel for Stryker
- Speaker panel for Biomet
- Past Member MHRA Device Safety Committee
- Member ODEP and Beyond Compliance Committees

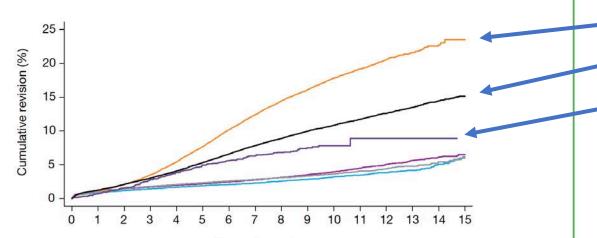
How has the NJR Data affected Practice ?

- Data published about Implant Category performance
- Data Published about Bearing performance
- Data Published about individual implants
- Data published about Implant Specific Complications
- Data published about Surgeon's performance


Figure 3.4 (a) Cemented primary hip replacement bearing surface by year.

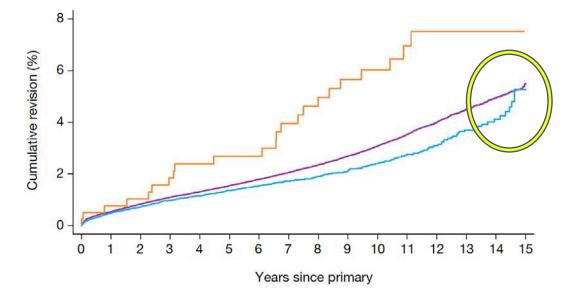
Remarkably stable use of Metal-on-Poly for Cemented THR


Figure 3.4 (b) Uncemented primary hip replacement bearing surface by year.

In Contrast wild Fluctuations in Uncemented THR Bearings as Metal-on-Metal was abandoned (Due to NJR publication!)

Figure 3.7 KM estimates of cumulative revision in uncemented primary hip replacements by bearing.

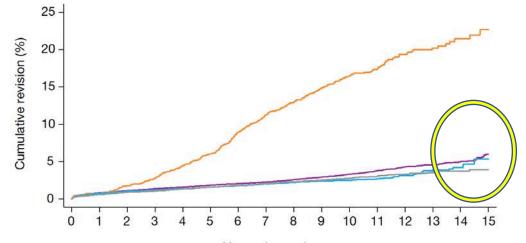
Years since primary


Number at risk

- MoP	161,460	143,595	126,532	109,560	93,126	77,187	62,579	48,684	37,093	26,881	18,625	12,109	7,542	4,242	1,811	448
- MoM	29,066	28,467	27,894	27,127	26,165	25,078	23,909	22,747	21,392	18,689	14,092	8,703	4,451	1,882	516	101
- CoP	92,258	77,188	63,189	50,999	40,469	31,955	25,209	19,578	15,219	11,566	8,726	6,495	4,508	2,861	1,415	466
CoC	125,287	117,830	109,562	99,596	88,679	75,935	62,675	48,047	34,259	22,729	14,551	8,805	5,132	2,716	1,278	356
- CoM	2,119	2,092	2,056	2,010	1,961	1,907	1,847	1,766	1,442	790	269	42	6	1	1	0
- Resurfacing	39,246	38,120	37,086	35,950	34,651	33,268	31,869	30,273	28,022	25,128	21,018	15,971	10,835	6,665	3,349	1,102

Uncemented MoM, **Resurfacing and** Ceramic-on-Metal all do badly compared to traditional bearings!

Figure 3.6 KM estimates of cumulative revision in cemented primary hip replacements by bearing.

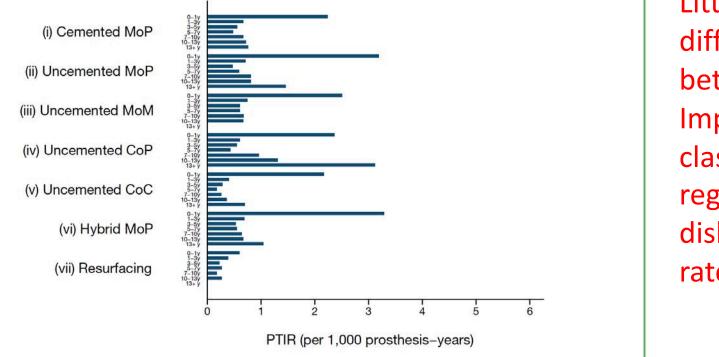

Cemented Ceramic-on-Poly LOOKED better than Metal-on-Poly until 13 year follow-up

Number at risk

-	MoP	310,690	282,064	254,579	226,261	197,859	169,803	143,547	119,279	98,059	79,147	61,837	45,777	31,050	19,689	10,089	3,417
-	MoM	394	382	371	358	341	329	315	295	280	265	244	181	113	53	23	7
-	CoP	41,955	36,803	31,730	27,003	22,655	18,586	15,054	11,992	9,478	7,319	5,603	4,036	2,779	1,691	837	226

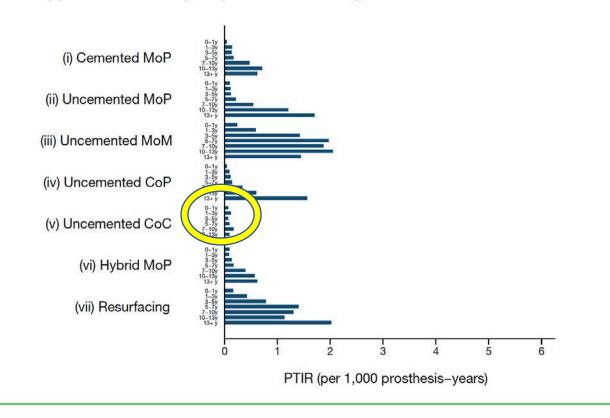
Figure 3.8 KM estimates of cumulative revision in hybrid primary hip replacements by bearing.

Years since primary


Number at risk

- MoP	135,831	118,019	100,822	84,654	70,392	57,647	47,269	38,148	29,919	22,908	16,936	11,857	7,595	4,403	2,144	654
MoM	2,369	2,330	2,270	2,206	2,122	2,054	1,945	1,847	1,737	1,542	1,307	952	578	341	193	67
- CoP	63,532	49,230	37,162	26,994	18,991	12,934	8,954	6,572	5,035	3,766	2,664	1,868	1,316	832	441	138
- CoC	25,621	24,383	22,839	21,135	19,110	16,864	14,639	12,344	10,083	8,040	6,136	4,485	2,894	1,562	622	145

HYBRID THR CoC, CoP and MoP all do better than 5% revision rate at 15 years


Figure 3.12 (c) PTIR estimates of dislocation/subluxation by fixation and bearing.

Little difference between Hip Implant classes as regards dislocation rate

Figure 3.12 (e) PTIR estimates of lysis by fixation and bearing.

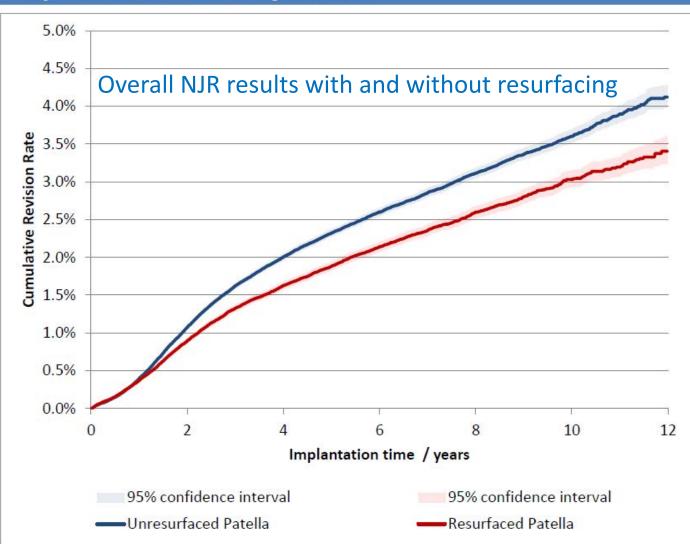
Considerable differences between Hip Implant types for Failure due to Lysis

Figure 3.12 (a) PTIR estimates of aseptic loosening by fixation and bearing. 0-1y 1-3y 3-5y 5-7y 7-10y 10-13y 13+ y (i) Cemented MoP 0-1y 1-3y 3-5y 5-7y 7-10y 10-13y 13+ y (ii) Uncemented MoP 0-1-55709393 0-1-55709393 0-1-3570033 0-1-3570033 0-1-3570033 0-1-3570033 0-1-3570033 0-1-357003 0 (iii) Uncemented MoM (iv) Uncemented CoP (v) Uncemented CoC (vi) Hybrid MoP 0-1y 1-3y 3-5y 5-7y 7-10y 10-13y 13+ y (vii) Resurfacing 6 5 PTIR (per 1,000 prosthesis-years)

Similarly Failure due to Aseptic Loosening varies a great deal

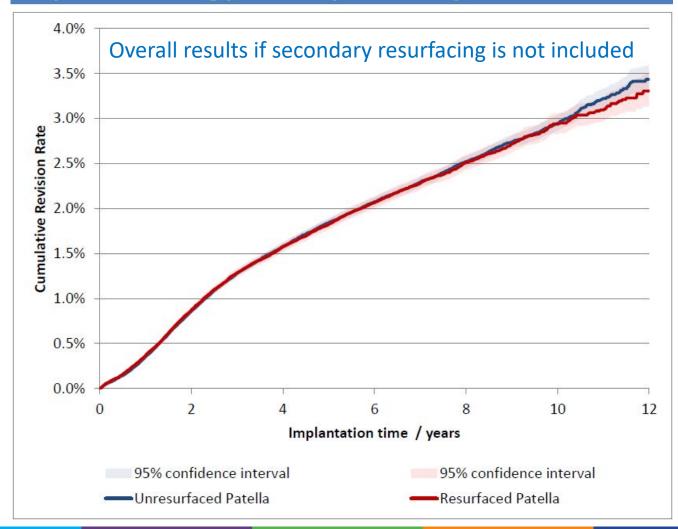
National Joint Registry www.njrcentre.org.uk Working for patients, driving forward quality

 Does Conformity, Trochlear Groove shape or "Stability" play a part in failure of TKR designs?


Surgeons may always resurface the patella at knee replacement because they <u>Believe</u> from the literature they <u>know</u> it is better to do so (or NOT to do so!)

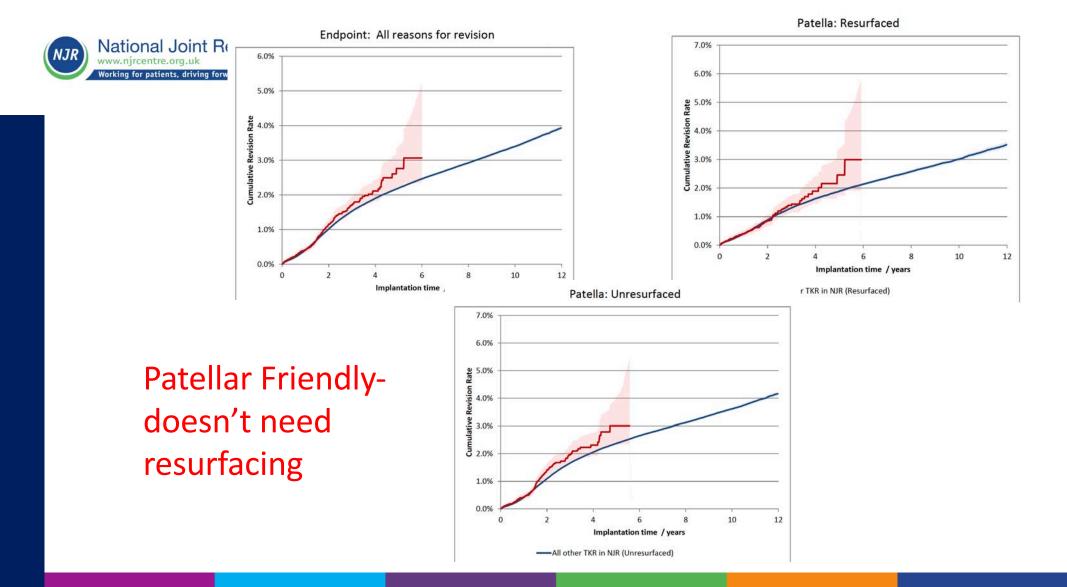
BUT

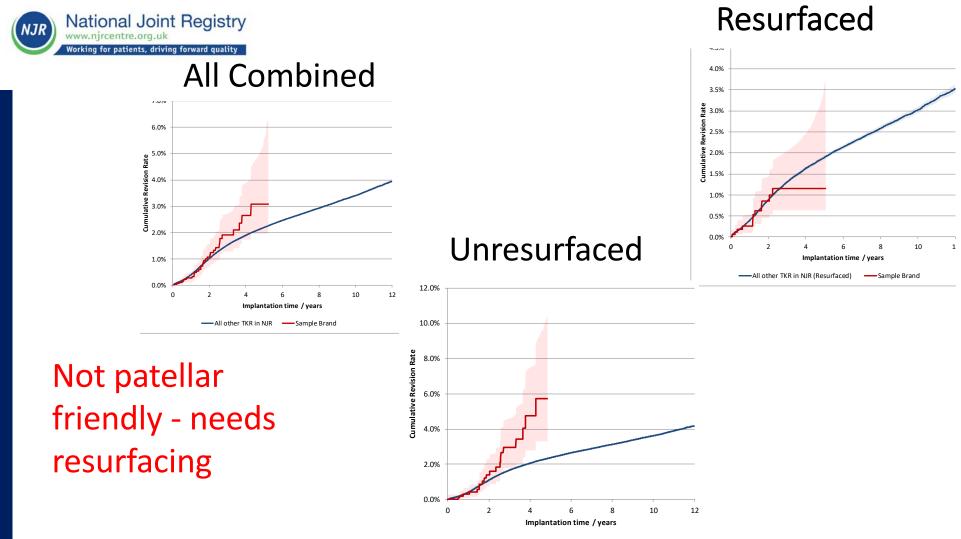
Is the literature detailed enough to tell us whether we should resurface the patella with THIS implant design but not with THAT one?



Endpoint: Revision for any reason

Endpoint: Excluding patella reoperation only




Implants might have poor outcomes because of *how they are used*

 Some implants may mainly be used by surgeons who DO resurface patellae (or Don't!)

- Some Implants may do better WITH patellar resurfacing
- Huge NJR database allows us to find out!!

All other TKR in NJR (Unresurfaced) — Sample Brand

Outlier Implants Withdrawn from UK market

Hip

- (p)(m)Profemur Cementless Stem with (m)Profemur L or (m)Profemur Z and Conserve Plus Resurfacing Cup
- Accolade with Mitch TRH Cup
- Anthology with BHR Resurfacing Cup
- ASR 300 cup
- ASR resurfacing cup
- CPCS with BHR Resurfacing Cup
- CPT with Adept Resurfacing Cup
- CPT with BHR Resurfacing Cup
- CPT with Durom Resurfacing Cup
- M2A 38 cup
- Metafix Stem with Cormet 2000 Resurfacing Cup
- R3 used with a metal liner
- Taperfit Cemented Stem with Zimmer Cemented Cup
- Ultima TPS Stem used with Ultima Mom cup (646/651), but from outlier 016: this is now Ultima MoM cup used with anything
- JRI Bicondylar Knee

Knee

- St Leger Knee
- Tack

TKR revision rates by Brand

	Number of	Median			40	ал.				
Brand ¹	Number of knee joints	(IQR) age at primary	Percentage (%) male	1 year	3 years	5 years	10 years	13 years	15 years	
Columbus Cemented	13,650	71 (65-77)	44	0.44 (0.34-0.58)	1.62 (1.40-1.88)	2.33 (2.04-2.66)	3.28 (2.80-3.85)	3.81 (2.96-4.89)		
E-Motion Bicondylar Knee	3,333	67 (61-74)	45	0.67 (0.44-1.02)	2.66 (2.15-3.29)	3.53 (2.92-4.26)	4.84 (4.01-5.83)	5.63 (4.55-6.96)		Beware
EvolutionMP	1,152	(62-75)	44	0.78 (0.39-1.55)	2.42 (1.53-3.82)	3.30 (2.01-5.40)				
Genesis II	74,851	(65-77)	42	0.45 (0.40-0.50)	1.55 (1.45-1.65)	2.12 (2.00-2.25)	3.15 (2.96-3.35)	3.45 (3.17-3.75)	3.45 (3.1)-3.75)	Confounders!
Genesis II Oxinium	10,154	59 (54-64)	40	0.55 (0.42-0.72)	2.36 (2.06-2.71)	3.50 (3.11-3.93)	5.95 (5.30-6.67)	7.36 (6.33-8.55)	(6. 5)-9.76)	
Insall-Burstein II Microport	2,059	71	45	0.34 (0.16-0.72)	1.76 (1.27-2.44)	2.92 (2.26-3.77)	5.11 (4.18-6.23)	6.65	(5.82-8.72)	
Journey II BCS Oxinium	2,620	65 (58-71)	41	0.70 (0.42-1.17)	3.50 (2.50-4.89)	3.79 (2.68-5.35)				
†Kinemax	11,090	71 (64-77)	43	0.25 (0.17-0.36)	1.76 (1.53-2.02)	2.71 (2.42-3.04)	4.76 (4.35-5.20)	5.98 (5.49-6.51)	6.53 (5.96-7.15)	
†LCS	2,059	70 (63-76)	41	0.64 (0.37-1.09)	1.83 (1.33-2.52)	2.41 (1.82-3.18)	3.06 (2.38-3.94)	3.42 (2.68-4.36)	4.03 (3.17-5.11)	
LCS Complete	27,842	70 (63-76)	44	0.45 (0.38-0.54)	1.69 (1.54-1.86)	2.55 (2.36-2.76)	3.74 (3.48-4.03)	4.55 (4.14-5.01)		
Legion	1,229	71 (65-77)	42	0.42 (0.18-1.02)	1.44 (0.87-2.38)	1.89 (1.18-3.02)				
Maxim	2,200	70 (63-77)	42	0.46 (0.25-0.85)	1.97 (1.46-2.66)	2.81 (2.19-3.62)	5.26 (4.30-6.43)	7.27 (5.86-9.01)	8.46 (6.62-10.79)	
MRK	13,410	70 (64-77)	44	0.31 (0.23-0.43)	1.22 (1.03-1.45)	1.69 (1.45-1.97)	2.73 (2.35-3.18)	3.18 (2.62-3.85)	4.14 (2.57-6.63)	
Natural Knee II	2,858	70 (64-76)	42	0.32 (0.17-0.61)	1.32 (0.96-1.82)	2.19 (1.70-2.81)	4.00 (3.27-4.90)	6.55 (5.23-8.17)	7.44 (5.48-10.08)	
Nexgen	163,322	70 (63-76)	43	0.37 (0.34-0.41)	1.40 (1.34-1.47)	2.17 (2.09-2.25)	3.72 (3.58-3.86)	4.53 (4.32-4.75)	5.03 (4.64-5.45)	

National Joint Registry

Working for patients, driving forward quality

NJR

Specific Implants results may depend upon sub-type

	Number	Median (IQR)				Time si	nce primary		
Brand'	of knee joints	age at	Percentage (%) male	1 year	3 years	5 years	10 years	10	15 years
Genesis II							10 CO - 1		
Cemented, unconstrained, fixed	53,312	71 (65-77) 71	43	0.38 (0.33-0.44) 0.62	1.39 (1.29-1.50) 1.88	1.91 (1.77-2.05) 2.61	2.80 (2.59-3.02 3.9	3.02 (2.76-3.30) 4.67	3.02 (2 76-3.30)
Cement, posterior- stabilised, fixed	18,866	(65-77)	39	(0.52-0.75)	(1.67-2.11)	(2.35-2.90)	(3.51-4.48)	(3.41-6.38)	
Genesis II Oxinium									
Cemented, unconstrained, fixed	6,428	59 (54-64)	40	0.49 (0.35-0.71)	2.02 (1.68-2.43)	2.93 (2.49-3.44)	4.73 (4.05-5.52)	(4.99-7.39)	6.74 (5.19-8.74)
Cemented, posterior- stabilised, fixed	3,121	58 (53-63)	41	0.70 (0.46-1.07)	3.16 (2.56-3.90)	4.82 (4.03-5.76)	9.17 (7.63-11.00)	11.28 (8.41-15.05)	
Journey II BCS Oxiniu	m								
Cemented, posterior- stabilised, fixed	2,601	65 (58-71)	41	0.66 (0.39-1.11)	3.32 (2.33-4.71)	3.62 (2.52-5.19)			
†Kinemax									
Cemented, unconstrained, fixed	10,832	71 (64-77)	43	0.24 (0.17-0.36)	1.78 (1.54-2.05)	2.72 (2.43-3.06)	4.78 (4.37-5.23)	5.99 (5.49-6.53)	6.50 (5.94-7.12)
LCS Complete									
Cemented, unconstrained, mobile	11,803	70 (64-76)	42	0.43 (0.32-0.56)	1.59 (1.37-1.85)	2.60 (2.31-2.93)	4.17 (3.74-4.64)	5.14 (4.44-5.95)	
Uncemented hybrid, unconstrained, mobile	15,900	69 (62-75)	46	0.48 (0.38-0.60)	1.78 (1.58-2.01)	2.53 (2.28-2.81)	3.40 (3.07-3.76)	4.14 (3.64-4.72)	
MRK		70		0.00	1.00	4 74	0.77	2.00	4.17
Cemented, unconstrained, fixed	13,163	70 (64-77)	44	0.32 (0.23-0.44)	1.23 (1.04-1.46)	1.71 (1.47-1.99)	2.77 (2.38-3.22)	3.22 (2.66-3.89)	4.17 (2.60-6.66)
NRG									
Cemented, unconstrained, fixed	8,586	70 (64-76)	43	0.36 (0.25-0.51)	1.45 (1.21-1.74)	2.38 (2.05-2.76)	3.69 (3.19-4.27)		
Cemented, posterior- stabilised, fixed	4,806	70 (63-77)	44	0.46 (0.30-0.70)	1.75 (1.42-2.17)	2.48 (2.06-2.97)	3.71 (3.11-4.42)		

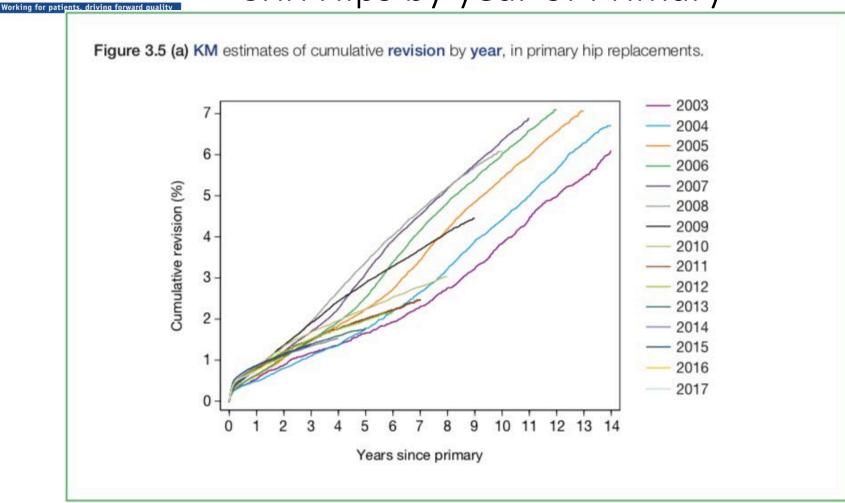
UNI Implants by Brand

	Number	Median	Demonterre	Time since primary									
Brand ¹	of knee joints	(IQR) age at primary	Percentage (%) male	1 year	3 years	5 years	10 years	13 years	15 years				
All unicompartmental knee replacements	122,910	63 (56-70)	50	1.08 (1.02-1.14)	4.17 (4.05-4.29)	6.44 (6.28-6.60)	12.11 (11.84-12.39)	16.28 (15.84-16.73)	19.13 (18.32-19.97)				
Unicondylar													
AMC/Uniglide	3,013	64 (57-71)	51	2.35 (1.87-2.96)	6.17 (5.35-7.11)	7.82 (6.89-8.88)	13.34 (11.95-14.89)	19.01 (16.36-22.04)	19.01 (16.36-22.04)				
Journey Uni Oxinium	1,031	61 (55-68)	57	1.60 (0.95-2.70)	3.98 (2.70-5.84)	6.79 (4.58-9.99)							
†MG Uni	2,394	63 (56-70)	54	0.92 (0.61-1.40)	3.96 (3.25-4.82)	5.99 (5.10-7.03)	10.18 (8 99-11.52)	12.40 (19.92-14.07)	14.90 (12.58-17.61)				
Oxford Partial Knee	68,098	64 (57-71)	53	1.14 (1.06-1.23)	3.90 (3.75-4.06)	5.96 (5.76-6.17)	(10.99-	15.36 (14.82-15.92)	18.36 (17.34-19.44)				
*Physica ZUK	14,973	63 (56-70)	55	0.34 (0.26-0.46)	2.19 (1.93-2.48)	3.45 (3.08-3.86)	6.74	8.84 (.79-11.46)					
†Preservation	1,524	62 (56-69)	55	2.57 (1.88-3.50)	8.09 (6.82-9.58)	11.61 (10.09-13.34)	17.78 (15.90-19.85)	23.29 (2().94-25.86)	25.11 (22.32-28.18)				
Sigma HP (Uni)	10,445	63 (55-70)	57	0.75 (0.60-0.95)	3.21 (2.84-3.62)	4.62 (4.14-5.16)	6.93 (6.02 <u>7.97</u>)						
Triathlon Uni	1,235	62 (55-69)	54	1.44 (0.88-2.34)	5.12 (3.86-6.76)	8.23 (6.43-10.50)							

Data on Surgeon Outcomes

- Funnel plots showing surgeons their own positions against every other surgeon for revision rates
- Similar plots for mortality
- Bar chart plots for PROMs, Satisfaction and Demographics
- Volume and scope of practice data

Overall improvements have occurred in THR revision rate in last decade

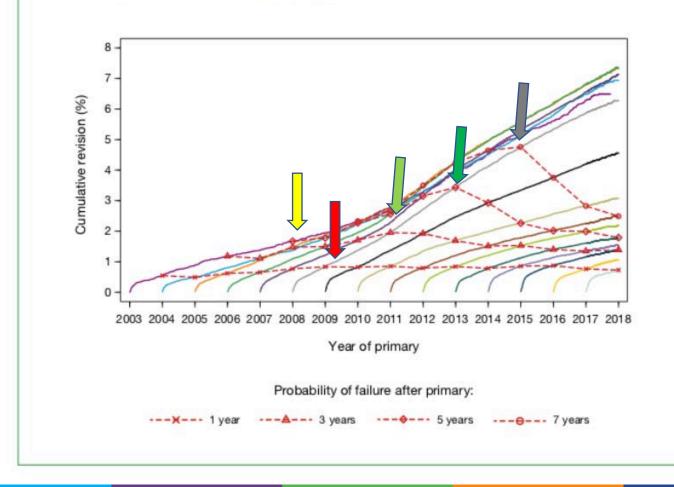

The Revision rate rose gradually until 2008 and then slowly improved each year since

CRR Hips by year of Primary

National Joint Registry

www.njrcentre.org.uk

NJR


People attributed this to Metal-on -Metal but was there another reason?

NJR started feeding back data about their practice to surgeons in 2008

- 1 year later the 1 year revision rate improved
- 3 years later the 3 year revision rate improved
- Etc etc

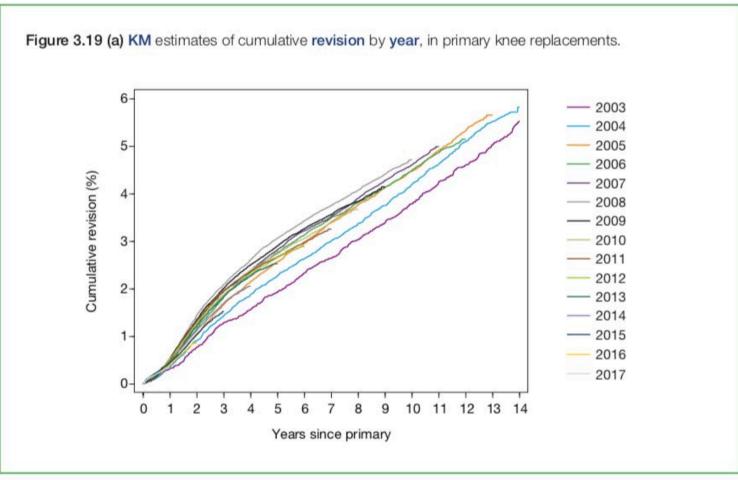
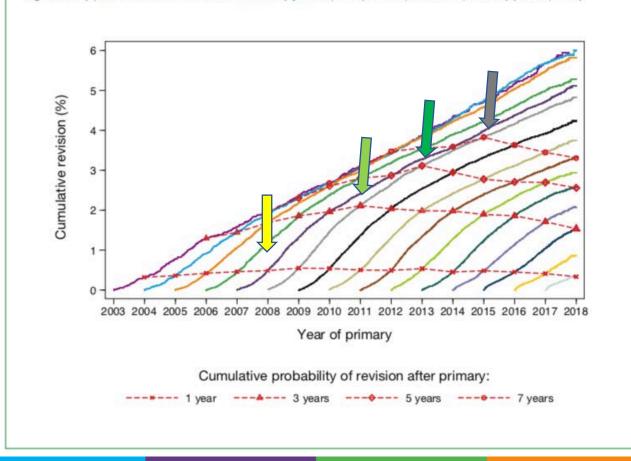
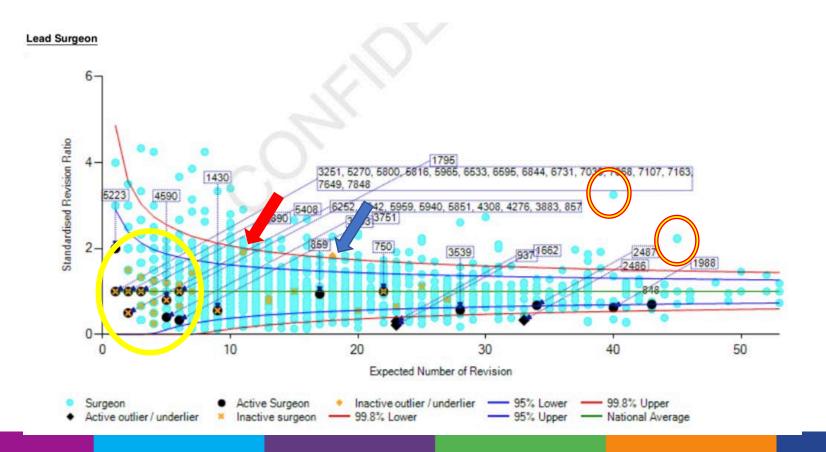


Figure 3.5 (b) KM estimates of cumulative revision by year, in primary hip replacements plotted by year of primary.


Results for Primary Knees shows improvement since 2008 WITHOUT any Metal-on-Metal issue!

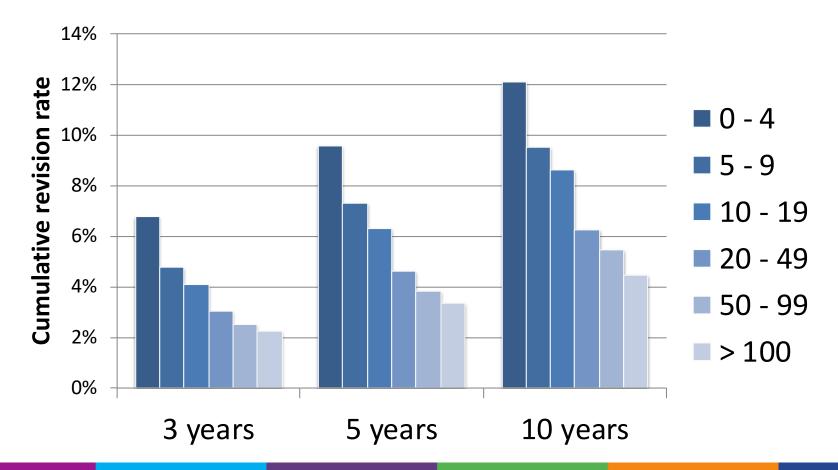
Revision rate peaking at 3,5 and 7 years after introducing surgeon feedback in 2008

Figure 3.19 (b) KM estimates of cumulative revision by year, in primary knee replacements plotted by year of primary.



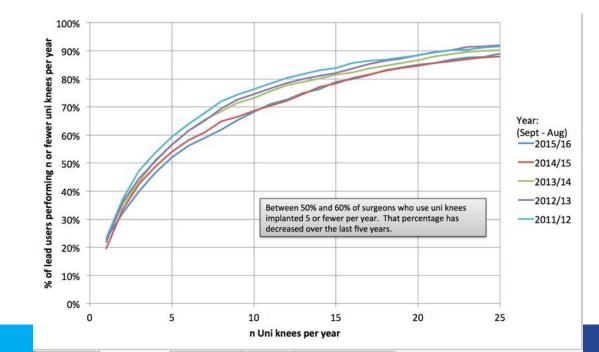
Informing surgeons about their practice and letting them see how they perform in comparison to each other has been followed by the surgeons changing practice and the revision rate decreasing

Arrows showing surgeons who have stopped doing THR and red circles those who did a lot of M-o-M



Outlier Surgeons – what has happened ?

- Many surgeons have changed their practice having seen their results
- Some have stopped using particular implants
- Some have simply stopped because they were not doing very many cases
- Some have stopped doing a certain procedure eg UKR


Unicondylar knee revision rate vs. surgeon annual volume

Clear relationship between doing few UNIs and a high revision rate

• Little by little the number of surgeons doing very few UNIs has decreased, each year over the last decade

Benefits for Patients

- Improved safety due to careful implant monitoring
- Improved choice due to available data about Hospitals and Surgeons

Data for April 2003 - August 2018

• Improved understanding of potential risks and benefits of surgery from publications and Decision Aid

Benefits for Surgeons

- Access to data about their own practice
- Information for Annual Appraisal Process
- Warning about poorly performing implants
- Access to Outcome and complications data about <u>their operations</u>
- Comparative data about their own revision rates
- EARLY warning about potential problems

Thank You

Tim Wilton MA FRCS Medical Director NJR

Timothy.wilton@njr.org.uk